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We study numerically the optimal paths in two and three dimensions on various disordered lattices in the
limit of strong disorder. We find that the length, of the optimal path scales with geometric distancer, as,
, rdopt with dopt=1.22±0.01 ford=2 and 1.44±0.02 ford=3, independent of whether the optimization is on a
path of weighted bonds or sites, and independent of the lattice or its coordination number. Our finding suggests
that the exponentdopt is universal, depending only on the dimension of the system.
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The statistical properties of optimal paths in a disordered
energy landscape have been studied extensively in recent
years[1–12]. Optimal path properties are relevant to many
optimization problems, including the folding of proteins,
spin glasses, and the well-known traveling salesman prob-
lem. Several studies considered the optimal paths in the
strong disorder limit, where a single site or bond weight
dominates the weight of the whole path, and found that the
length , of the optimal path scales with distancer as rdopt,
wheredopt=1.22±0.02 ind=2 anddopt=1.43±0.03 ind=3
[6,10]. Since the optimal path can be mapped to the mini-
mum spanning tree[13] and to invasion percolation with
trapping [7,14], it follows that the paths between two sites
separated at a distancer in all three problems scale as the
optimal path, with the same exponentsdopt.

Recently, Knackstedtet al. [15] studied invasion percola-
tion with trapping and concluded that the scaling exponent of
the minimal path depends on the lattice coordination number
and is therefore not universal. They further argue that since
optimal paths in strongly disordered media and minimum
spanning trees on random graphs are related to invasion per-
colation, it follows that these problems also do not possess
universal scaling properties. Here we directly study the opti-
mal paths in the strong disorder limit and find that their
scaling properties are universal. The fact that the scaling of
optimization paths is universal enables one to study only one
type of lattice for each dimension.

We perform numerical simulations in the strong disorder
limit of the optimal path between two sitesA andB in sev-
eral two-dimensional(2D) and three-dimensional(3D) lat-
tices with periodic boundaries. Strong disorder is usually
implemented by assigning(to either sites or bonds of the
lattice) random energiesei, uniformly distributed on an inter-
val [0, 1], and computing the weights associated with them,

ti ; expsbeid, s1d

whereb is the strength of disorder which has the physical
meaning of inverse temperature. The optimal path is the path

connecting sitesA and B, which minimizes the sum of
weights of all visited sites or bonds on the way fromA to B.
The limit b→` is the strong disorder limit, where only the
largestti along the path dominates the sum. It is rigorously
proved[6,10–12] that the optimization in strong disorder is
equivalent to removing sites or bonds in random order, pro-
vided that the connectivity betweenA andB is not destroyed.
This can be understood if the order of removal is determined
by the descending values of energies of the sites or bonds.

For each lattice of sizeL3L in two dimensions orL
3L3L in three dimensions, we generateM =104 realiza-
tions of disorder implemented by the order of removal of
sites or bonds. In all realizations, we place sitesA=s0,0,0d
and B=sr ,0 ,0d at the same locations separated by distance
r ;L /2. For each realization we compute the length of the
optimal path,,, left after removing all sites or bonds from
the lattice, except those whose removal would destroy con-
nectivity betweenA andB. In both cases(sites or bonds) the
length of the path, is defined as the number of bonds con-
necting sitesA and B. We compute the distributionPs, ,rd,
the average,opt=k,l, and the average squarek,2l over all
realizations of disorder.

To implement various lattices with different coordination
numbers, we always start with a square lattice in two dimen-
sions or a cubic lattice in three dimensions. In the square
lattice a site si , jd is connected with four sitessi , j ±1d,
si ±1, jd. In the triangular lattice, of coordination numberz
=6, it is connected with two additional sitessi +1,j +1d and
si −1,j −1d. In the “star” lattice withz=8 it is connected with
two more sitessi −1,j +1d and si +1,j −1d. In the hexagonal
lattice sz=3d, every site si , jd is connected with sitessi
−1,jd andsi +1,jd, and in addition, it is connected with sites
si , j +1d if i + j is even, or withsi , j −1d if i + j is odd.

In a simple cubic lattice each sitesi , j ,kd is linked with
z=6 sites:si ±1, j ,kd, si , j ±1,kd, and si , j ,k±1d. To imple-
ment a face-centered-cubic(fcc) lattice with coordination
number 12 we connect each sitesi , j ,kd with sites si
+1,j ,kd, si −1,j ,kd, si , j +1,kd, si , j −1,kd in the same plane,
with sites si , j ,k+1d, si +1,j ,k+1d, si , j +1,k+1d, si +1,j
+1,k+1d in the plane above, and with sitessi , j ,k−1d, si
−1,j ,k−1d, si , j −1,k−1d, si −1,j −1,k−1d, in the plane be-
low.

We find that for both site and bond lattices in two and
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three dimensions, the distributionsPs, ,rd converge for large
r, as expected for a mass distribution of a fractal object to the
functional form,

Ps,,rd =
1

,optsrd
FF ,

,optsrdG , s2d

whereFsxd is a function of a scaling variablex;, /,opt (Fig.
1). The shape of the functionFsxd; limr→`,optPsx,opt,rd is
caused by the particular geometry of the system with peri-
odic boundaries. For example, the second peak of the dis-

tribution in the case of the square lattice is formed by the
paths connectingA andB along the diagonal of the system.
The sharp fall in the tailsx@1 is due to the effect of the
boundaries, sincer =L /2.

In analogy with the behavior of the distribution of the
shortest path length on the percolation cluster[16,17], one
can expect fory;L / r @1 and 1!x!ydopt a power-law de-
cay,

Fsxd , x−gf1sxdf2sx/ydoptd, s3d

FIG. 1. Scaled distributionsPs, ,rd for (a) site square lattice,(b) bond square lattice,(c) site triangular lattice, and(d) bond triangular
lattice, for r =2ssd, r =4shd, r =8sLd, r =16snd, r =32s+d, r =64s3d, andr =128s* d.

FIG. 2. (a) The dependence of,opt on r for hexagonal(z=3, solid line,s), square(z=4, dotted line,h), triangular(z=6, dashed line,n),
and star(z=8, long dashed line, *) lattices for the strong disorder implemented on sites(bold lines and symbols) and bonds(thin lines and
symbols). (b) Same for cubic(z=6, solid line,h) and fcc(z=12, dotted line, *) lattices, for sites(bold lines and symbols), and bonds(thin
lines and symbols).
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whereg is a universal exponent andf1sxd and f2sxd are lower
and upper cutoff functions, respectively. The functional
forms of the cutoff functions for the shortest path on a per-
colation cluster are given by

f1sxd , exps− a1x
−d1d,

f2sxd , exps− a2x
d2d, s4d

where d1, d2 are positive scaling exponents anda1, a2 are
positive lattice-dependent constants. Our numerical analysis
shows that the same functional form holds for the distribu-
tion of the optimal path in strong disorder. In analogy with
self-avoiding walks problem[18] we can conjecture that

d1 =
1

dopt − 1
. s5d

Plotting lnhlnfb/Fsxdgj vs lnsxd, whereb is a constant that
must be selected to achieve the best straight-line fits, we find
d1=5±1 for all 2D lattices andd1=2.6±0.5 for all 3D lat-
tices, which is consistent with Eq.(5). We find alsod2
=2.5±0.5 in two dimensions andd2=3.0±0.5 in three di-
mensions. The values of exponentg=1.6±0.1 in two dimen-
sions andg=1.3±0.1 in three dimensions can be found by
simulating systems with largey@1 [19]. For y=2, which we

study here, the power-law regime due tox−g in Eq. (3) does
not exist, and the sharp fall in the tail forx@1 in Fig. 1 is
described by functionf2sxd. To find the exponentdopt defined
by the scaling relation,opt, rdopt, we plot ,opt vs r in a
double logarithmic scale(Fig. 2), find its successive slopes

d̃optsrd of the data points, defined as

d̃optsrd ;
ln ,optsrÎ2d − ln ,optsr/Î2d

ln 2
, s6d

and plot them vs 1/r (Fig. 3). The error bars for each point
are estimated to be 2ssrd / sÎM ln 2d, wheressrd is the rela-
tive standard deviation of the distributionPs, ,rd,

ssrd ;
Îk,2l − k,l2

k,l
. s7d

Note, that due to Eq.(2), ssrd→s0, wheres0 is the standard

deviation ofFsxd (Fig. 4). Thus, the errors ind̃optsrd practi-
cally do not depend onr and constitute forM =104 less than
a percent.

We determine the value ofdopt for each lattice as the value
of they intercept of the least-square linear fit(Fig. 3). This fit
assumes corrections to scaling of the form

FIG. 3. (a) The dependence of successive slopes ofd̃optsrd on 1/r for hexagonalsz=3d, squaresz=4d, triangularsz=6d, and starsz
=8d lattices for the strong disorder implemented on sites and bonds.(b) Same for cubicsz=6d and fccsz=12d lattices. The symbols are the
same as in Fig. 2. The linear fits are indicated by the same line styles as in Fig. 2.

FIG. 4. The relative standard deviationssrd of the distributionPs, ,rd as function of 1/r in (a) two and (b) three dimensions. The
symbols and line styles are the same as in Fig. 2.
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,opt = asr + bddopt + osrdopt−1d, s8d

wherea andb are lattice-dependent constants. The values of
dopt for each lattice are presented in Table I. All these values
are within the error bars from

dopt = H1.22 ± 0.01 s2Dd
1.44 ± 0.02 s3Dd.

J s9d

This result for d=2 is quite different from the value of
1.135±0.003 obtained in Ref.[15] for the shortest path in

invasion site percolation with trapping in triangular and star
lattices [20]. Our resultdopt=1.22±0.01 is consistent with
Ref. [15] for other site and bond lattices.

In summary, we find that the values ofdopt are universal
for all lattice types studied for both site and bond problems,
and depends only on the dimensionality of latticed. These
findings agree with the assumption thatdopt monotonically
increases withd from dopt/d=1 for d=1, to dopt=2 for d
=dc=6, which is the upper critical dimension of percolation
[21], since fordùdc, we expect to recover for,opt a random-
walk behavior withdopt=2. Since a random network corre-
sponds to an infinite-dimensional lattice, the latter value de-
fines the behavior of,opt as a function of the number of sites
N on a random network,

,opt , rdopt , Ndopt/dc , N1/3. s10d

The scaling(10) was found to hold for random networks for
both site and bond disorder, and any coordination number
[12]. Since invasion percolation with trapping and minimal
spanning trees are mapped to optimization in strong disorder,
our results suggest also that these systems possess universal
character—in contrast with the conclusion in Ref.[15].
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TABLE I. The values of the scaling exponentdopt for different
lattices of various dimensionalityd and coordination numberz for
strong disorder implemented on sites and bonds.

Lattice type
d z dopt

(site disorder)
dopt

(bond disorder)

Hexagonal 2 3 1.221±0.02 1.210±0.02

Square 2 4 1.226±0.02 1.213±0.02

Triangular 2 6 1.228±0.02 1.210±0.02

Star 2 8 1.224±0.02 1.218±0.02

Cubic 3 6 1.441±0.03 1.425±0.03

fcc 3 12 1.458±0.03 1.429±0.03
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